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1 Introduction

Lead exposure outcome assessments generally focus on human health, but livestock lead

exposures may also represent a considerable, and previously under examined, negative envi-

ronmental externality. We estimate bovine mammal (BM) lead poisoning at used lead acid

battery (ULAB) recycling sites in rural India.

Lead is a widely used industrial input with an annual global demand exceeding 10 million

tons, more than half of which is met through secondary smelting (i.e., recycling) (Interna-

tional Lead Association, 2014). Approximately 85 percent of the lead used worldwide goes

into the production of lead-acid batteries (International Lead Association, 2014). These bat-

teries are used in traditional and electric vehicles, back-up power supplies, critical systems

such as hospitals and telecommunications, and for green technologies such as photovoltaic

and wind turbine energy storage (World Health Organization, 2017). While this recycling

takes place in regulated and monitored facilities across the US and Europe, it occurs fre-

quently in informal and unregulated settings in low- and middle-income countries (LMICs).

A 2016 study suggested anywhere between 10,599 to 29,241 informal ULAB recycling sites

existed across 90 LMICs (Ericson et al., 2016). Demand for ULAB recycling activity will

likely continue to grow as, for example, the number of new vehicles sold in LMICs more than

tripled between 2000 and 2018 (Organisation Internationale des Constructeurs d’Automobiles

(OICA), 2016).

While the demand for lead recycling is likely to remain high, informal ULAB recycling

is a major source of environmental contamination and human lead exposure (World Health

Organization, 2017; UNICEF and PureEarth, 2020). Recycling operations are often located

in backyards, where unprotected workers break open batteries with hand tools and remove

the lead plates. These are smelted in open-air pits that spread lead-laden fumes and partic-
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ulate matter over wide swaths of surrounding neighborhoods (World Health Organization,

2017). Lead-laced acid from the batteries is often drained onto the bare ground or dumped

directly into waterways (World Health Organization, 2017). Documented soil lead contam-

ination ranges from 2,500 mg/kg (Daniell et al., 2015) to 302,000 mg/kg (Haefliger et al.,

2009) in residential areas in some LMICs. We focus on India as a significant portion of

worldwide ULAB recycling occurs in India, and, despite substantial reductions in exposure

from lead-paint, ULAB recycling continues to contribute to elevated blood lead levels among

the Indian population (Ericson et al., 2018; Belliniger et al., 2005; Chatham-Stephens et al.,

2013; Ericson et al., 2013, 2018; Sharma et al., 2005). In this paper, we quantify the en-

vironmental externalities of ULAB recycling related to the under examined relationship of

lead and livestock in India.

Livestock production is estimated to contribute 4% of India’s GDP and as much as

70% of rural employment (Roy and Singh, 2013). Additionally, poorer households in India

depend more on livestock than richer households. For example, farmers holding less than

0.01 hectares of land earned 26% of their household income from animal husbandry while

farmers holding over 10 hectares only earned 6% of household income from animal husbandry

(Chakravorty et al., 2019). Furthermore, for non-migrating families, livestock ownership was

an important source of livelihood diversification for households in the lower half of the income

distribution (Deshingkar et al., 2020).

Once emitted, lead particles are highly immobile and persistent in soil, tending to remain

near the surface for prolonged periods. This poses a continuous potential risk to grazing cat-

tle, which ingest from 1% to nearly 18% of their dry matter intake as soil (Thornton and

Abrahams, 1983). Accordingly, the soil intake pathway represents a significant source of

bovine lead exposure (Mayland et al., 1975; Alloway, 2012; McDowell, 2003; Sharpe, 2004).

General symptoms of BM lead poisoning include blindness, ataxia, cramps, muscle tremors,

convulsions, aggression, teeth grinding, anorexia, diarrhea, constipation, and respiratory
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failure, among others (Blakley, 1984; Zmudski et al., 1983; Bates and Payne, 2017). One

of the earliest studies found bovine death occurred from chronic low-level exposure within

20 days (Hammond and Aronson, 1964), and more recent observations suggest that rela-

tively low soil lead concentrations can result in severely adverse health outcomes in bovines

(Abrahams and Thornton, 1994; Aslani et al., 2014; Cowan and Blakley, 1998; Ikenaka et al.,

2012; Krametter-Froetscher et al., 2007; Thornton and Abrahams, 1983; Zadnik, 2010). Un-

fortunately, treatment may be ineffective due to the rapid progression of nervous system

disease. Thus, euthanization is often the most practical intervention (Cowan and Blakley,

1998). These effects are consistent across breeds and sexes (Cowan and Blakley, 1998).

Despite toxicological evidence, documented cases, and the potential for harmful human

livelihood impacts, few studies have attempted to quantify mortality and associated eco-

nomic costs of bovine lead exposure in India. To fill this gap, we first model potential bovine

lead exposures from soil using FAO data on animal density in combination with soil pollution

mapping conducted by the NGO PureEarth. Second, we identify the dose response relation-

ship between lead exposure and bovine death to obtain estimated moralities attributable to

lead poisoning. Finally, we estimate the net present value of economic damages from these

bovine mortalities.

2 Methods

2.1 Attributing livestock densities at ULAB sites

To determine the number of livestock grazing on lead contaminated land in India, we overlaid

the FAO gridded livestock data (Robinson et al., 2014) with soil lead concentrations collected

by the PureEarth. As part of their Toxic Sites Identification Program (TSIP), a USAID

funded project, (PureEarth, 2020), PureEarth recorded geo-located soil lead concentrations

surrounding 222 informal used lead acid battery (ULAB) recycling sites in India. PureEarth

staff utilized in-situ X-Ray Fluorescence (XRF) spectrometry to quantity surface soil lead
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concentrations at these sites. The FAO gridded livestock data are available at a spatial

resolution of 3 minutes of arc (about 5×5 km at the equator). This data is initially based on

nationally reported livestock statistics and observed livestock densities, then expanded with

statistical modeling and adjusted according to corroborating datasets from FAOSTAT and

elsewhere (Robinson et al., 2014). The bovine densities for India are overlaid with the TSIP

ULAB lead contamination sites (Fig. 1). Additional information on GIS methods used are

available in the appendices.

Figure 1: FAO gridded bovine densities for India overlaid with the 222 lead contaminated
sites used in the analysis

2.2 Modeling soil lead levels and area of exposure

The PureEarth TSIP database does not necessarily map a comprehensive characterization

of soil contamination at each of the 222 sites. To interpolate surface soil lead levels at each

site, we modeled the likely spatial attenuation of soil lead concentrations (understanding

how lead pollution levels decay as one moves away from the centroid of the pollution site).

We examined whether wind influenced the direction of migration of lead particles, but found

that it did not (Appendix B).
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2.2.1 Spatial attenuation

Next, we examined how lead pollution levels decay as one moves away from the source point

of the pollution site. To do this, we used PureEarth’s global soil lead contamination database

which includes 4587 soil samples taken at 690 ULAB sites around the world. We call the

soil sample at each site with the highest lead concentrations the “source” point for pollution

at that local site. Ultimately, we wanted to map pollution levels in 10 m concentric circles

radiating out from the source point up to a radius of 500 m away.

The “portion of source point lead value” was defined as:

rd =
Sa

So

(1)

where So is the source soil point lead value (mg
kg

), Sa is the sample soil point lead value (mg
kg

)

and rd is the portion of the So lead value. Note that rd is indexed by the distance Sa is away

from So. For example, if the portion of source point lead value at 50 m from the source point

was 0.25, then the soil lead levels were estimated to have fallen to 25% of the source point’s

value at 50 m away from the source. Figure 2 provides a graphic depiction of this process.

We ran a random forest predictive model and two ordinary least squares (OLS) regressions

to predict equation 1 from a training sample (data summaries and model comparisons can be

found in the appendices). We used the model with the most predictive capacity to estimate

the share of source point lead values at 10 m concentric intervals radiating out from the source

point at each of India’s 222 ULAB sites. We used the outputs of this prediction process as

inputs for the BM exposure modeling. However, we recognize that these predictions carry

their own error margins and so include a detailed description in the appendix (appendix

D). These bounds include a 90%-confidence interval for the random forest model using an

out-of-bag interval method described by Zhang et al. (2019).
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Figure 2: Overview of spatial attenuation modeling process. Having generated a random
forest predictive model for soil lead contamination from all globally known 690 ULAB sites (4587
total samples), we predicted each of India’s 222 sites’ soil lead contamination up to 500 m from the
source point at 10 m intervals. Given that FAO’s gridded livestock population density is statistically
modeled as uniform (Robinson et al., 2014), we set the probability of exposure equal to the percent
of the “density square” covered by contaminated lead. Actual exposure dosage is represented by
equation 2.

2.3 Calculating lead dose

We calculated the amount of lead ingested each day by ruminants based on the mean soil

lead concentrations in each of the 10 m concentric circles described in the spatial attenuation

section and several assumptions about bovine body mass and diet. These inputs were used

in the following calculation based on Johnsen and Aaneby (2019):

D =
S ∗ F ∗ Si

Bw

∗G (2)

where D is the lead dose per day (mg
kg

body weight per day), S is the soil lead concentration

(mg
kg

), F is the amount of fodder ingested per day (kg of dry weight), Si is the daily soil

6



ingestion rate, Bw is the body weight (kg), and G is the duration of exposure.

We predict lead concentration values S using random forest predictive modeling for con-

centric circles emanating out from the ULAB site’s source point of contamination. Bovine

mammals ingest fodder (F ) in relationship to their body weight (Bw). A bovine mammal

ingests approximately 3% of its bodyweight in fodder each day (Birthal and Dikshit, 2010;

Department of Primary Industries and Regional Development, 2020).

BM soil intake (Si) ranges between 1% and 18% of total dry matter intake (Thornton

and Abrahams, 1983). Because India features heavy monsoon rains and more sparse grazing

conditions that have been shown to increase soil intake, we use a conservative value of 8%

for Si (Thornton and Abrahams, 1983). The 8% is broadly consistent with values noted

elsewhere, including Siberia (Mamontova et al., 2007) and the French West Indies (Collas

et al., 2019).

The final piece of information we need to calculate the lead dosage per day that BMs

face is the duration of exposure (G). This is complicated by unknown BM behavior and

location (free ranging, in a pen, or some mixture). To resolve this challenge, we opt for

the most conservative approach by assuming animals are penned up and that lead exposure

occurs exclusively in their stalls. We multiply soil lead levels by 0.7 (G), which can serve

as a soil-to-structure-dust transfer variable taken from the US Environmental Protection

Agency’s IEUBK model (US Environmental Protection Agency, 1998). Transfer of lead from

owners to the holding pens is realistic considering farmers interact with their livestock daily

(Birthal and Dikshit, 2010; Sharma et al., 2019) and indoor lead dust from ULAB recycling

has been illustrated as a major source of exposure in South Asian countries (Chatham-

Stephens et al., 2013). While this is likely an underestimate (because in practice many BMs

are not exclusively penned up), it resolves the challenge of modeling herding behavior while

providing a conservative estimate.

7



2.4 Estimating the number of lethally exposed BMs

The number of lethally exposed BMs is represented by Equation 3. If contaminated lead

soil provides a daily dose above the fatal threshold values, 6 mg/kg and 5 mg/kg for adults

and calves respectively (Zmudski et al., 1983), then it is considered an area of fatal exposure

(AE). These threshold values were also used by Johnsen and Aaneby (2019) in their ruminant

soil lead exposure assessment.

BMFatalitiesi =
AEi(So, rdi)

AT i

∗Dti (3)

The source point of pollution at each site is based on that site’s highest recorded soil

sample (So) and the site-specific portion of source point lead value (rd) was calculated via

Equation 1. The density square area (AT i) and the density of BMs in the density square

(DT i) are provided by the FAO’s gridded livestock dataset (Robinson et al., 2014). We

estimated the number of BMs with fatal exposure as the number of BMs in the density area

containing leaded soil above the threshold values. The percentage of adult and calf BMs, of

the total BM population, were based on the most recent Indian livestock census (Department

of Animal Husbandry and Dairyings, 2012).

2.5 Estimating the monetary value of BMs

We estimated the net present value (NPV) for current and future BM income streams,

where the income streams are based on Khan and Iqubal’s study of rural farmers’ household

economies (Khan and Iqubal, 2010). We used an exchange rate of 70.49 Rupees to 1 USD

(World Bank, 2020). We used a 5% discount rate, which has previously been used for cattle

cost-benefit analysis in India (Singh et al., 2018).
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2.5.1 Value of BMs in the household economy

In order to calculate the value of BM mortalities we incorporated the total time horizon of

all income streams, yearly costs, yearly benefits, and a discount rate (5%). The productive

lifespan of a typical Indian BM is 20 years and they produce on average 4 calves (Dhillon,

2018; Sharma et al., 2019). We adjusted household cattle and buffalo values from Khan and

Iqubal (2010) from 2008 values to 2019 values using a 2.24 consumer price index change

(CPI) (World Bank, 2020). In the NPV calculation, the first year of ownership includes the

cost of purchase and the net income from inputs and outputs. Subsequent years included

only the value of inputs and outputs. We later refer to the household value of a BM as VHH

(value to the household).

In our modeling, female bovines produce offspring only after age 4 and then every other

year according to the interval estimates of offspring production in Sahiwal cows (Ahmad and

Sivarajasingam, 1998) up to a maximum of 4 calves. Concerning calves, we assumed that

they were produced from adults and not purchased (meaning no purchase price was included

in the NPV). Also, calves were assumed to only incur input costs (no output values) in

their first year of existence. Because our BM fatality estimates assume that calves perish

within their first year of existence, a perished calf always incurs the loss of its entire potential

lifespan. However, because BM fatality estimations were designated between calves (<= 1

year old) and adults, and an adult could be any age when it came into contact with a fatal

lead dose, we use 10-years (the mid-point of the length of the productive adult lifespan) to

account for the unknown age at which a BM was fatally exposed to lead. We assume BMs

stop being productive at the start of their 21st year. As buffalo are not usually used for meat

at the household level (Naveena and Kiran, 2014) and cattle are generally not slaughtered

(Harris, 1992), the value of their slaughter products were not included in income estimates.

To capture productivity gains from draft power, we adapted Okello et al.’s study (2015)

from Uganda. They find the time requirement for plowing 1 acre using a pair of draft
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cattle was 2.2 days, while farmers required 12 days to plow 1 acre using a hand held hoe.

Cattle can begin plowing at 2 years of age and continue until 11 years of age. A single

draft animal provided a 272% increase in time efficiency (Okello et al., 2015). We assume

similar productivity gains for using draft animals in India. The average land holdings from

2001 to 2016 from India’s Agriculture Census was 2.94 acres (1.19 ha) (CEIC, 2016). The

average annual income for agricultural farmers of all land holdings from non-livestock activity

was 70,428 Rs in 2013 (the closest census report) (Chakravorty et al., 2019). Using this

figure suggests an opportunity cost from non-livestock daily income of 193 Rs per day.

This estimate is similar in magnitude to the International Labor Organization’s findings

that average rural wages were 175 Rs per day in 2011-2012 in India (International Labor

Organization, 2018). We use the amount of plow time per acre, 2.2, and take the difference

from the hand plow time per acre (12 − 2.2 = 9.8). Then a pair of draft animals save 28.8

days per year (9.8 days saved per acre * 2.94 acres), this equates to an average of 5,560 Rs in

productivity gains per year (193 Rs * 28.8 days) from a pair of bovine during their drafting

years (9 years). Divided by two, attributing these gains across both animals, is 2,780 Rs, or

$ 2.39 per day (40.3 Rs-USD 2010 exchange rate). Khan and Iqubal (2010) found 45% of

Indian farmers plowed land with draft animals, therefore we add 1,251 Rs (2,780 Rs * 0.45)

to our NPV calculations for the value of draft animals.

2.6 Estimating damages

Damage incurred from exposure at any given site were calculated as follows:

Damagei = BMFatalitiesi ∗ VHH (4)

where i is the site index, BMFatalitiesi is the number of BM fatalities, and VHH is the net

present value of one BM.
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3 Results

3.1 Random forest model output and BM exposure estimates

The random forest method was more accurate than the OLS models (random forest: R2 =

0.75 and SSE = 34.12). More details on model comparison can be found in the appendices.

The random forest model provided outputs for soil lead predictions at 10 m intervals for

each of the 222 ULAB sites in India. The prediction distribution is provided in Figure 3.

Figure 3: Share of source point soil-lead estimates, with 95% CI bounds. We described each
known soil lead sample by its distance from the site center and by its share of the site’s highest
recorded soil lead value (the “source point,” which was taken to be the site’s center). Then we
used random forest modeling to predict the decay rates above. That is, each point represents the
predicted share of the source point’s lead value by 10 m intervals for each site. We added a trend
line to visualize the trend.

The results from the random forest exercise indicated that the average share of the

maximum lead value remained between 0.2 and 0.4 when moving away from the source point

at each site. The average lead concentration was 1809 mg Pb/kg (1734 - 1884 95 % CI) in

soil over the 500-meter distance. The exact soil-level estimates, for each 10 m interval at

every site, can be found in the supplemental materials (excel file).
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3.2 Number of annual BM fatalities and area of exposure

Our subsequent estimates for annual BM fatalities are provided in Table 1. We find an

aggregate of 3,273 BM fatalities across the 222 sites, with a per site average of 14.74 (95%

CI, [7.28, 22.21]).1 The total BM population estimated to be found within a 500 m radius of

each ULAB site was 22,385, with an average of 101 per site (95% CI [87 - 114]). Therefore,

we find the mortality rate for bovine within 500 m of a ULAB site to be 14.62%. The

aggregate area of soil contamination contributing to lethal levels of lead exposure was 23.06

km2, with a per site average of 0.104 km2 (95% CI, [0.071, 0.137]). The total area of any

soil lead contamination above 0 mg/kg was 120.89 km2, with a per site average of 0.545

km2 (95% CI, [0.478, 0.592]). The maximum soil lead level contributing to BM fatalities

was 62,846 mg/kg, and the minimum contributing to fatalities was 8,992 mg/kg.

BM Type Estimated Fatalities Average Per Site
Adult Cattle 1224.60 5.51
Calf Cattle 427.39 1.93
Adult Buffalo 1,137 5.51
Calf Buffalo 483.64 11.58
Total 3,273.0 14.74

Table 1: Estimated total number of lethally exposed BMs from the 222 documented sites
(daily intake threshold of above 5 mg/kg per day for calves and above 6 mg/kg for adults).

3.3 Cost of BM fatalities

The calculations for the cost of BM fatalities are detailed in Table 2. The total economic

cost of lost output due to estimated annual bovine fatalities in these 222 sites is $22,110,086

(in 2019 USD), with a per site average of $ 96,566 (95%CI, [$ 46,149, $ 147,005]). Without

any effective lead mitigation measures, we would expect these contaminated sites to cause

this amount of additional damage each year.

1All per-site confidence intervals were calculated with nonparametric bootstrapping of the estimated
per-site mean by resampling observations (with replacement) 5000 times.
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Value of BMs to the Household Economy - 2008 Rs per annum converted to 2019 USD
Adult Purchase
buffalo 56014
cattle 22406
Inputs fodder feed grain oil cake labor total input
buffalo 20165 32085 12682 13443 78375
cattle 17925 32085 11203 13443 74656
Outputs milk dung cake manures offspring draft power total output
buffalo 118751 30113 4481 5601 2803 163286
cattle 80661 22406 4481 4481 2803 116368
Net income stream Total (no offspring) (no draft power)
buffalo 84911 79309 80571
cattle 41712 37231 37373

Cost of BM fatalities
Adult NPV Total 5 % discount Rs USD BM Quant. Total Value Site Average
buffalo adult total NPV 1,029,516 Rs $14,620
buffalo adult life average 514,758 Rs $ 7,310 1137 $ 8,311,275 $ 37,438
cattle adult total NPV 493,610 Rs $ 7,010
cattle adult life average 246,805 Rs $ 3,505 1225 $ 4,293,259 $ 19,339
buffalo calf total NPV 891,782 Rs $ 12,664 484 $ 6,129,259 $ 27,609
cattle calf total NPV 445,891 Rs $ 6,332 427 $ 2,703,713 $ 12,178

Total $ 21,437,575 $ 96,566

Table 2: Estimated cost (discounted net present value in 2019 USD) of BM fatalities to the
household economy (based on Khan and Iqubal (2010)).

3.4 Distribution of BM fatalities

In addition to the aggregate annual deaths and economic damages presented above, there

is another dimension of the burden of bovine death worth highlighting. The distribution of

deaths is highly skewed, meaning that sites that have both a high density of livestock and

with high soil lead concentrations are where the majority of deaths are expected to occur.

According to Figure 4, approximately 80% of the 222 sites register zero estimated deaths,

while the remaining 20% of sites account for all the estimated deaths. This distribution

of damages implies important considerations should be taken when deciding which sites to

prioritize for possible mitigation actions.
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Figure 4: Histogram of the estimated annual bovine deaths across the 222 TSIP sites. All
176 sites with zero estimated annual deaths are placed in the left most bar. The number above
each bar represents how many TSIP sites fall within that bin of the histogram.

4 Discussion

At approximately 15 BM fatalities (costing $ 96,566) per site per year, for a total of $

21,437,575, our estimated economic damages and loss of animal life further justify proac-

tive measures to reduce lead dust exposure. Previous literature suggests our estimates are

both realistic and conservative. In their study of ruminants grazing lead-contaminated soil,

Johnsen et al. (2019) use lower parameters for soil uptake and on-site grazing time yet find

no risks for cattle or sheep grazing on soil contaminated with up to 3,700 mg Pb/kg. They

report that 3,700 mg Pb/kg amount is above the Norwegian Veterinary Institute’s suggested

soil lead level for ruminant grazing (300 mg Pb/kg). Our estimates suggest zero BM fatali-
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ties up to 8,992 mg Pb/kg. Previously documented cases of livestock lead exposure in India

further suggest similarities in the number of bovine fatalities, even at lower soil lead levels.

Lemos et al. (2004) investigated lead exposure in a herd of 120 Nelore cows from a lead

battery recycling plant in Brazil. Thirty-five cattle died within 45 days with clinical signs of

cortical neurological disturbances. Soil lead concentrations in the pasture area were 147–431

mg/kg (Lemos et al., 2004). In the Thane district of India, over 300 cattle were found to

have died from environmental exposure to lead, cadmium, and chromium attributable to a

lead-zinc smelter in 1991 (Dogra et al., 1996).

Studies of Indian livestock morbidity and mortality in Karnal (Prasad et al., 2004),

Maharashtra (Bangar et al., 2013), Himachal Pradesh (Chaudhary et al., 2013), and Haryana

(Pal et al., 2018) have suggested all-cause bovine mortality rates of 14.17%, 4.42%, 9.14%,

2.56%, respectively. Our model suggests that lead poisoning provides an additional bovine

mortality burden of 14.62 % to farmers living within 500 m of a ULAB site (0.785 km2 or

78.5 ha). Given an 1.2 ha average farm land holding in India for 2010 (Hazell, 2015), the

resulting bovine mortality burden would extend across approximately 65 farmers per site.

Because a ULAB recycling site implies a higher bovine mortality rate, perhaps up to 28 %,

without likely providing any economic benefit from the ULAB site’s activities, it is possible

that these farmers will subsequently not receive adequate utility from bovine husbandry to

continue the practice. This is an area for further investigation. Note, our estimates only

assume death if a bovine mammal encounters a fatal lead dose in a given year. We do not

account for gradual lead exposure over multiple years at smaller doses that eventually reach

a fatal threshold of total cumulative exposure. Therefore, the 14.62 % mortality rate should

be considered the rate from more immediate lead poisoning (i.e., BMs that ingest enough

lead to cause death in the same year).

Implementation of protective measures is ultimately left to policy makers and environ-

mental specialists. However, we would like to emphasize two further points for consideration.
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First, the TSIP database is largely sampled focusing on sites falling in the poorest regions

of India (like Bihar). Thus, the $ 96,566 of economic damages estimated at each ULAB site,

even spread among many small farmers, would be a tremendous burden to a rural agricul-

turalist. Second, it is likely that the 222 known sites do not even constitute a large share

of ULAB sites in India. Chatham-Stephens et al. (2013) suggest that the TSIP database

only captures around 10% of ULAB sites in South Asia, so it is quite possible that our

mortality estimate only captures about one tenth of the true value of BM mortality due to

lead exposure in India.

Unfortunately, there appears no easy policy solution for ULAB lead exposure on live-

stock. At any given ULAB site, eliminating soil-lead exposure requires active remediation

by engineers. Lead’s persistence in soil implies that shutting down ULAB sites will not re-

solve the soil-lead exposure problem. Additionally, because of low barriers to entry and the

low-level of capital necessary to smelt lead, new sites can open relatively quickly. Closing

current ULAB sites may promote their re-opening elsewhere and an increase in the total area

of exposed soil. As the area of exposure increases, the area on which farmers could forage

for fodder or graze livestock shrinks. Policy makers might consider designing incentives to

register ULAB sites and protective regulations to contain site exposure areas. Yet, if the

affected farmers have little political influence and the overall contribution to the total BM

mortality rate is perceived as low, policy makers may not be driven to act at all.

This study has several limitations. First, it only models the costs related to animal mor-

tality, but not morbidity. Modeling based on lethal daily dose largely precludes measuring

acute exposures or non-lethal negative health outcomes (lost milk productivity, etc.). Cowan

and Blakley (1998) found euthanization was the most effective option for lead-poisoned cattle

in Canada given the recovery rates, product contamination, and medical costs. This sug-

gests that the non-fatality related health outcomes are likely large and important. Second,

because the FAO livestock density maps are not available past 2010, it is difficult to make
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year-to-year estimates up to the present date. Therefore, we suggest caution before using

our estimates for forecasting. If the geographic distribution of livestock densities have not

changed drastically in India since 2010, this is less of an issue, if however, there has been

much change, this is an important limitation.

There remain many avenues for future study. First, similar concerns for lead exposure

in other ruminants (sheep, goat, etc) have been documented. Expanding the study to in-

clude estimates of the number of fatalities for these species would be useful, especially as

the poorest farmers are more likely to own sheep or goats rather than cattle or buffalos.

Second, as humans consume livestock and livestock products, there is reason to investigate

livestock products as a potential lead exposure pathway. To the degree to which these live-

stock products (milk, etc.) are consumed locally represents an additional (and unequal)

burden for the rural poor due to the externalities of recycling lead acid batteries. Third, a

broader economic analysis of ULAB recycling’s market size would indicate the total value

of externalities per battery produced. This could help policy makers determine appropriate

taxes, permits, compensations, or other pollution reduction strategies. Fourth, because 20%

of the sites cause the vast majority of fatalities, geographic targeting of mitigation activi-

ties is necessary. Modeling exercises like the one performed in this study could rank sites

by expected mortality in order to prioritize mitigation investments so they could focus on

the sites with the largest externalities. Finally, in the process of providing BM exposure

estimates, we produced an empirically derived model of ULAB soil lead contamination that

could serve as a framework for modeling other ULAB pollutants and damages.
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C. Feidt, and S. Jurjanz (2019, June). Cattle exposure to chlordecone through soil intake.

The case-study of tropical grazing practices in the French West Indies. Science of The

Total Environment 668, 161–170.

Cowan, V. and B. Blakley (1998). Acute lead poisoning in western Canadian cattle — A

16-year retrospective study of diagnostic case records. 57, 6.

Daniell, W. E., L. Van Tung, R. M. Wallace, D. J. Havens, C. J. Karr, N. Bich Diep, G. A.

Croteau, N. J. Beaudet, and N. Duy Bao (2015). Childhood Lead Exposure from Battery

Recycling in Vietnam. BioMed Research International 2015, 1–10.

Department of Animal Husbandry and Dairyings (2012). 19th Livestock Census 2012 All

India Report. Technical report.

Department of Primary Industries and Regional Development (2020). Preventing residues

when using stockfeed from organochlorine (OC) contaminated land. Agriculture, Govern-

ment of Western Australia.

Deshingkar, P., J. Farrington, L. Rao, S. Akter, P. Sharma, A. Freeman, and J. Reddy

(2020). Livestock and poverty reduction in India: Findings from the ODI Livelihood

Options Project.

20



Dhillon, A. (2018). ’I ward them off with a cricket bat’: Indian farmers despair over ma-

rauding cows. The Guardian.

Dogra, R., R. Murthy, A. Srivastava, J. Gaur, L. Shukla, and B. Varmani (1996). Cattle

mortality in the Thane district, India: a study of cause/effect relationships. Archives of

environmental contamination and toxicology 30 (2), 292–297.

Ericson, B., J. Caravanos, K. Chatham-Stephens, P. Landrigan, and R. Fuller (2013, Febru-

ary). Approaches to systematic assessment of environmental exposures posed at hazardous

waste sites in the developing world: the Toxic Sites Identification Program. Environmental

Monitoring and Assessment 185 (2), 1755–1766.

Ericson, B., R. Dowling, S. Dey, J. Caravanos, N. Mishra, S. Fisher, M. Ramirez, P. Sharma,

A. McCartor, P. Guin, M. P. Taylor, and R. Fuller (2018, December). A meta-analysis of

blood lead levels in India and the attributable burden of disease. Environment Interna-

tional 121, 461–470.

Ericson, B., P. Landrigan, M. P. Taylor, J. Frostad, and J. Caravanos (2016, March). The

Global Burden of Lead Toxicity Attributable to Informal Used Lead-Acid Battery Sites.

Annals of Global Health 82 (5), 686.

Haefliger, P., M. Mathieu-Nolf, S. Lociciro, C. Ndiaye, M. Coly, A. Diouf, A. L. Faye,

A. Sow, J. Tempowski, J. Pronczuk, A. P. F. Junior, R. Bertollini, and M. Neira (2009,

October). Mass Lead Intoxication from Informal Used Lead-Acid Battery Recycling in

Dakar, Senegal. Environmental Health Perspectives 117 (10), 1535–1540.

Hammond, P. B. and A. L. Aronson (1964, April). LEAD POISONING IN CATTLE AND

HORSES IN THE VICINITY OF A SMELTER*†. Annals of the New York Academy of

Sciences 111 (2), 595–611.

Harris, M. (1992, February). The Cultural Ecology of India’s Sacred Cattle. Current An-

thropology 33 (S1), 261–276.

Hazell (2015). Is Small Farm-Led Development Still a Relevant Strategy for Africa and Asia?

21



The Fight Against Hunger and Malnutrition.

Hijmans, R. J. (2019). raster: Geographic Data Analysis and Modeling. R package version

3.0-7.

Ikenaka, Y., S. M. Nakayama, T. Muroya, J. Yabe, S. Konnai, W. S. Darwish, K. Muzandu,

K. Choongo, G. Mainda, H. Teraoka, T. Umemura, and M. Ishizuka (2012, October). Ef-

fects of environmental lead contamination on cattle in a lead/zinc mining area: Changes in

cattle immune systems on exposure to lead in vivo and in vitro. Environmental Toxicology

and Chemistry 31 (10), 2300–2305.

International Labor Organization (2018). India Wage Report: Wage policies for decent work

and inclusive growth. Technical report, ILO.

International Lead Association (2014). Lead Recycling: Sustainability in Action. Technical

report.

Johnsen, I. V. and J. Aaneby (2019, October). Soil intake in ruminants grazing on heavy-

metal contaminated shooting ranges. Science of The Total Environment 687, 41–49.

Johnsen, I. V., E. Mariussen, and Voie (2019). Assessment of intake of copper and lead by

sheep grazing on a shooting range for small arms: a case study. Environmental Science

and Pollution Research 26 (8), 7337–7346.

Khan, N. and A. Iqubal (2010). LIVESTOCK REVOLUTION AND ITS IMPACTS ON

THE SUSTAINABILITY OF MARGINAL AND SMALL FARMERS IN INDIA: A CASE

STUDY. pp. 14.

Krametter-Froetscher, R., F. Tataruch, S. Hauser, M. Leschnik, A. Url, and W. Baumgartner

(2007). Toxic effects seen in a herd of beef cattle following exposure to ash residues

contaminated by lead and mercury. The Veterinary Journal 174 (1), 99–105.
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Additional GIS method information
We used the coordinate reference system (CRS):“+proj=utm +zone=44 +datum=WGS84
+units=m +no defs” for all GIS data. The TSIP dataset was provided a CRS with the sf
package (Pebesma, 2018). The cattle and buffalo gridded livestock raster shapefile (Robin-
son et al., 2014) was imported with the raster package (Hijmans, 2019) and was vectorized
using the spex (Sumner, 2019) package. The sf package was also used to get the size of
each density area (in squared kilometers). The sf package attributed each TSIP ULAB site
with its respective cattle or buffalo density. All maps were generated with the tmap package
(Tennekes, 2018).

Additional wind direction method information
Because lead exposure from ULAB recycling is at least partially airborne, we felt it prudent
to test wind direction on soil lead level distributions. However, we found no statistically
significant evidence that wind direction influenced the distribution of lead in the soil. Three
sites in the TSIP database permitted radial testing because they had been sampled in a near
360-degree radius around several localized concentrations within each site (Fig. A.1). As a
ULAB site would feature multiple lead furnaces or battery breaking areas, we identified 1)
localized sources of exposure (called localized source points) based on their elevated soil-lead
levels, and 2) sample points, which are the lower lead-level sample points adjacent to source
points. Each of these source points were provided a 100m or 150m circle of exposure zone,
based on proximity to other source points, and the adjacent points located within these
circles were collected into separate data frames using R as before. Thus, we had 8 localized
source points between the sites with adjacent sample points to test for radial distributions.
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Figure A.1: Surface soil lead concentrations at targeted sites with projected circles of 100m
and 150m radii used to determine the relative significance of prevailing wind on lead particle
migration.

We measured each sample point’s distance from its respective localized source point.
Then, using the GPS coordinate of each point and the center point and obtained a slope for
each sample point. We converted our results to both degree and radial measures around the
localized source point, adjusted according the quadrant location. Figure A.2 is a hypothetical
example, where the sample point (located at latitude 22 and longitude 108) is measured
radially against the location of the source point at the center of the circle (located at latitude
20 and longitude 106).
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Figure A.2: Hypothetical Demonstration of the Radial coordinate assignment process. Cen-
ter point is the localized source point and the point at (22,108) is the sample point.

We prepared a total of eight different localized source points and assumed that if the
distribution soil of lead followed a wind direction, then the mean soil lead level would be
greater in one hemisphere at any given source point. To test this, we performed t-tests at
each of the eight local source points, among the three sites, to compare the mean soil lead
values between hemispheres. As seen in Table A.1, all hemispheres tests were insignificantly
different from one another at the 95 % CI level. Based on this, we excluded wind direction
for our main analysis.
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Wind direction t-test results

Dong Mai
Source Point 63
North-South Comparison: t = -0.30, p = 0.76 CI 95 % = (-10578.42, 7912.02), Avg north = 5506.6, Avg south 6839.8
West-East Comparison: t = -2.30, p = 0.03 CI 95 % = (-13145.15, -599.14), Avg west = 1358.57, Avg east 8230.722
Source Point 224
North-South Comparison: t = -0.36, p = 0.43 CI 95 % = (-2894.89, 2020.61), Avg north = 1761.09, Avg south 2198.23
West-East Comparison: t = 0.83, p = 0.03 CI 95 % = (-13145.15, -599.14), Avg west = 1358.57, Avg east 8230.722
Source Point 128
North-South Comparison: t = 0.55, p = 0.60 CI 95 % = (-1322.18, 2208.02), Avg north = 2576.27, Avg south 2133.35
West-East Comparison: t = -0.81, p = 0.45 CI 95 % = (-3039.57, 1543.53), Avg west = 2173.78, Avg east 2921.80
Source Point 25
North-South Comparison: t = -1.09, p = 0.28 CI 95 % = (-16425.33, 5001.27), Avg north = 3058.23, Avg south 8770.26
West-East Comparison: t = -1.10, p = 0.06 CI 95 % = (-18671.53, 711.46), Avg north = 1079.74, Avg south 10059.77

Tegal
Source Point 156
North-South Comparison: t = -1.54, p = 0.13 CI 95 % = (-2821.83, 352.58), Avg north = 3721.42, Avg south 4956.04
West-East Comparison: t = 0.60, p = 0.55 CI 95 % = (-1220.96, 2258.83), Avg north = 4494.89, Avg south 3975.96
Source Point 410
North-South Comparison: t = -1.36, p = 0.18 CI 95 % = (-7612.29, 1494.83), Avg north = 4059.27, Avg south 7118.00
West-East Comparison: t = 1.00, p = 0.32 CI 95 % = (-2175.71, 6499.34), Avg west = 6497.06, Avg east = 4335.24
Source Point 1 450
North-South Comparison: t = 1.98, p = 0.05 CI 95 % = (-8.00, 5461.26), Avg north = 5441.20, Avg south 2714.58
West-East Comparison: t = -0.04, p = 0.97 CI 95 % = (-3620.43, 3468.62), Avg north = 4554.39, Avg south 4630.30

Cinangka
Source Point 156
North-South Comparison: t = 0.51, p = 0.61 CI 95 % = (-6646.48, 10898.95), Avg north = 13646.00, Avg south 11519.77
West-East Comparison: t = -0.40, p = 0.75 CI 95 % = (-96813.28, 89364.53), Avg north = 9145.00, Avg south 12869.38

Table A.1: Results of T-tests comparing the soil lead distributions between North-South and
West-East hemispheres around 8 localized source points among 3 different ULAB sites. Only the
West-East comparison of source point 63 was found as significantly different, which was not enough
to justify including wind direction in the spatial attenuation modeling.

Additional spatial attenuation method information
It was anticipated that the distribution of soil lead levels would remain relatively constant
for the first few meters before quickly dropping to significantly lower values and decay to
zero at a slower rate. That is, the soil-lead levels would remain high for a short distance
from the source before dropping off quickly and flattening towards zero. A scatterplot of soil
lead values by distance supported this.
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Figure A.3: Scatter Plot of soil level by distance for TSIP Site Lead Samples

The first proposed modeling approach, based on the apparent pattern of data points and
the expected soil-lead distribution at each site, was to test 3rd- order and 5th-order linear
regressions because they would emulate the hypothetical distribution of a rapid decay rate
before leveling out. However, a linear model, in this case, would require researchers to as-
sume factors such as site topography, site size, battery part stockpiling patterns, and human
spread of contaminated dust were consistent. These are unlikely assumptions, but a well-fit
linear regression could support better a priori extrapolation of exposure if necessary. In our
second modelling approach, we used a random forest model, which makes value predictions
based on information related to each site by averaging decision tree outputs. Importantly,
the random forest process could utilize the unique site identification number to account for
site heterogeneity in some regard. In all models, the percent of the sample point soil lead
value (here called ”percent of max”) would be the dependent variable. To compare the fit of
the three models, the TSIP database of 4587 was randomly assigned to training and testing
groups in a ¾:¼ ratio respectively. Then the models would be compared against one another
through their ability to use the training group’s values to predict the testing group’s values,
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as indicated by the R2 and Sum of Squares Error values:

SSE = (predicted dependent values – testing dependent values)2

For each of the 4587 soil-lead samples among the global 690 ULAB sites (presented in
the scatterplot below) we added the percent of max attribute so that each point had the
following attributes:

• site id: Unique site identifier
• test result: sample soil-lead value
• distance: Distance from source point (m)
• max: The source point soil lead value (highest soil-lead value at site)
• percent of max: Ratio of sample soil lead value to max soil lead value from the source point

The linear regression models had the following regression equations and outputs:

Figure A.4:
3rd order OLS: Yp = [5.821e-01] – [9.193e-03]*D + [4.595e-05]*D2 – [6.246e-08]*D3
R2 = .32
SSE = 86.40138
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Figure A.5:
5th order OLS: Yp = [7.460e-01] – [2.481e-02]*D + [2.976e-04]*D2 + [-1.455e-06]*D3 + [3.089e-
09]*D4 + [-2.372e-12]*D5
R2 = .4507
SSE = 67.44117

Researchers created a random forest model from the randomforest package (Liaw and
Wiener, 2002) with the same training data (using the site id, max, and distance variables as
the independent variables). The outputs were as follows:
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Figure A.6:
Random forest output:

SSE = 34.12064
R2 = .75024

Considering the substantially lower SSE value and considerably high R-squared value,
the random forest plot was considered both the best model and a quality fit for the data,
capable of predicting soil-lead values for any distance under 500m from a given center soil-
lead sample point. We then used the rfinterval (Zhang, 2019) package to create upper and
lower confidence bounds.
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Figure A.7:
Graph of Decision Tree Error Amounts
site id: 57.54326
distance: 356.83788
max: 75.01989

Information on the Random Forest Confidence Interval
The random forest model possessed a distribution of predictions over the course of iterations,
which can be described using Zhang et al. (2019)’s out-of-bag confidence interval method.
We implemented their method with their rfinterval package in R (Zhang, 2019). A.8 allows
for visual comparison of the lower, predicted, and upper estimated share of source point soil
lead levels.

The resulting BM fatalities and associated costs can be found in A.2. We did not incor-
porate these values in our primary analysis because they represent cases in which every one
of the 222 ULAB sites have values at or beyond the 90 % CI bounds. These cases would be
extremely unlikely to occur, and, therefore, our estimation of the true value is most certainly
captured between these bounds.
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Figure A.8: Lower, predicted, and upper estimated share of source point soil lead distribu-
tions. Zhang et al. (2019)’s method.

x



Type Low/High Est. Fatalities Low/High Cost
Adult Cattle 10.8 – 2,880.7 $ 135,851 - $ 12,875,740
Calf Cattle 5.8 – 998.4 $ 40,416 - $ 10,780,320
Adult Buffalo 17.9 – 1,706.1 $ 178,256 - $ 9,386,051
Calf Buffalo 13.9 – 731.9 $ 37,190 - 6,401,853
Total 48.4 – 6,317.1 $ 391,715 - $ 39,443,966

Table A.2: lower and upper 90 % CI bounds values, Zhang et al. (2019)’s method
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